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In this paper, we propose a new type of second order tetrahedral edge element for the quasi-static electromagnetic field analysis. The 

unification of variables of two edges on each side of the conventional element provides for the elimination of one variable on the side, 

with the system matrix of the finite elements remaining singular. By using the proposed type of element in the quasi-static analysis of a 

simple model, it is demonstrated that the element is superior to the conventional second order element in terms of computational time. 
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I. INTRODUCTION 

HE USE of edge elements can give fast and accurate 

electromagnetic field computation. In order to obtain 

accurate solutions, various kinds of high order elements are 

proposed [1]-[5]. However, such elements bring an increase in 

unknown variables and larger computational costs. 

It is well known that the elimination of variables based on 

tree-gauging causes deterioration of the convergence rate of 

ICCG method [6]. When the number of eliminated variables is 

less than the number of tree edges, known as partial-gauging, 

the system matrix remains singular. Nevertheless, the number 

of ICCG iterations increases compared with ungauged 

computation [6]. 

In order to address this issue, the second order element with 

partial tree-gauging is discussed [7]. Additionally, we propose 

a new type of hexahedral second order element for 

magnetostatic field analysis [8]. The element has an identical 

variable of two edges on each side and the shape functions are 

approximated to be constant along the side. The element 

enables the remarkable reduction of computational costs as 

well as the number of unknown variables. 

In this paper, we extend the hexahedral element to a 

tetrahedral element and apply it to quasi-static problems. 

II. FINITE ELEMENT SYSTEM MATRIX 

If we assume that all fields are sinusoidal functions of time, 

the governing equations using the magnetic vector potential A 

and the electric scalar potential  for quasi-static 

electromagnetic fields become 
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where  = 2f, , , J0 and f are the angular frequency, the 

magnetic reluctivity, the electric conductivity, the external 

current density and the frequency, respectively. The potential 

 satisfies the electric field intensity E = －j(A + ∇) to 

symmetrize the finite element system matrix. In the non-

conductive region the electric conductivity is set to be zero 

and (2) is ignored. 

Let x and b denote the unknown vector and right-hand side 

vector. Due to the weighted residual method, we get the weak 

form 
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where K is the finite element system matrix and x is the 

solution vector consisting of unknown A and . 

III. EDGE ELEMENT 

In edge element, A and  can be approximated by edge and 

nodal shape functions NIJ, NI as 
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where I and J the nodes indices, IJ denotes the direction of the 

edge from node I to node J. NIJ and NI have following 

properties: 
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Here, ds and IJ)(KL) denote the line element vector along edge 

eKL and the Kronecker delta, respectively. 

In this paper, a geometrical edge of a finite element is called 

side, whereas the location related to a vector variable is called 

edge. In the case of second order elements, sides and edges are 

not the same. 

A. Conventional Second Order Edge Element 

Fig. 1(a) shows the second order tetrahedral element we 

suggested previously [3][4]. The edge shape functions N and 

nodal functions N of the element can be described as follows: 
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where i, j and k are nodes at the vertices, and l, m and n are 

mid-nodes on the edges i-j, j-k, k-i, respectively. Nil and Nnm 

are the functions of edges (black arrow vectors in Fig. 1(a)) on 

sides and the ones of edges (gray arrow vectors) on facets, 

respectively. 

Three edges can be defined on each facet in the element 

originally. Since the number of independent edges on the facet 

is two, one edge can be eliminated. It offers the local tree-

gauging on the facet. 

B. New Type of Second Order Edge Element 

We consider a particular side of a conventional second order 

element shown in Fig. 1(b). Fig. 2(a) shows edge 1 and edge 2 

of a side with their corresponding shape functions N1 and N2, 

respectively. 

Let A1 and A2 denote the potentials on edges 1 and 2, 

assumed to be the same value Aunif / 2. The magnetic vector 

potential A is rewritten as 
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where Nunif as shown in Fig. 2(b), is a new shape function on 

the side and satisfies (13). 
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Aunif is the line integral of vector potential on the side, with 

two edges unified into one. Therefore, the shape functions N 

of edges (solid arrow vectors in Fig. 1(b)) on the sides are 
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instead of (8). The shape functions N of edges (dotted arrow 

vectors in Fig. 1(b)) on the facets are not changed. 
 

 
Fig. 1. Second order tetrahedral elements. (a) Conventional (b) Proposed. 

 

 
Fig. 2. Unification of two edges. (a) Two edges, (b) Unified edge. 

IV. NUMERICAL RESULTS 

In order to demonstrate the effectiveness of the proposed 

element, a simple model shown in Fig. 3 is analyzed. B, H, n 

in Fig. 3 are the flux density, the magnetic field intensity and 

normal unit vector on the boundaries, respectively. The model 

is a cube region with applied uniform 50 Hz field (Bz) in the z-

direction. Ht represents the boundary condition to apply the 

field. A non-magnetic conductive body (material: Cu) is 

placed at the center of the region. The conductivity of the 

body is 5.82107S/m. One-eighth of whole region is analyzed 

due to symmetry. 

Let n be nn/nc where nn and nc are the number of ICCG 

iterations with the proposed and conventional elements. c 

represents the ratio of computational time with proposed 

element to that of the conventional ones. n is almost one as 

shown in Fig. 4, the convergence of ICCG method is not slow. 

As a result, the proposed type of element reduces the 

computational time. 

 

Fig. 3. Uniform field model. 

 

Fig. 4. Numerical results. 
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